Page 1

Displaying 1 – 2 of 2

Showing per page

Dense Granular Poiseuille Flow

E. Khain (2011)

Mathematical Modelling of Natural Phenomena

We consider a dense granular shear flow in a two-dimensional system. Granular systems (composed of a large number of macroscopic particles) are far from equilibrium due to inelastic collisions between particles: an external driving is needed to maintain the motion of particles. Theoretical description of driven granular media is especially challenging for dense granular flows. This paper focuses on a gravity-driven dense granular Poiseuille flow...

Dynamics of a Reactive Thin Film

P.M.J. Trevelyan, A. Pereira, S. Kalliadasis (2012)

Mathematical Modelling of Natural Phenomena

Consider the dynamics of a thin film flowing down an inclined plane under the action of gravity and in the presence of a first-order exothermic chemical reaction. The heat released by the reaction induces a thermocapillary Marangoni instability on the film surface while the film evolution affects the reaction by influencing heat/mass transport through convection. The main parameter characterizing the reaction-diffusion process is the Damköhler number. We investigate the complete range of Damköhler...

Currently displaying 1 – 2 of 2

Page 1