Page 1 Next

Displaying 1 – 20 of 154

Showing per page

Macroscopic contact angle and liquid drops on rough solid surfaces via homogenization and numerical simulations

S. Cacace, A. Chambolle, A. DeSimone, L. Fedeli (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We discuss a numerical formulation for the cell problem related to a homogenization approach for the study of wetting on micro rough surfaces. Regularity properties of the solution are described in details and it is shown that the problem is a convex one. Stability of the solution with respect to small changes of the cell bottom surface allows for an estimate of the numerical error, at least in two dimensions. Several benchmark experiments are presented and the reliability of the numerical solution...

Magnetic equations with FreeFem++: The Grad-Shafranov equation & the current hole

Erwan Deriaz, Bruno Despres, Gloria Faccanoni, Kirill Pichon Gostaf, Lise-Marie Imbert-Gérard, Georges Sadaka, Remy Sart (2011)

ESAIM: Proceedings

FreeFem++ [11] is a software for the numerical solution of partial differential equations. It is based on finite element method. The FreeFem++ platform aims at facilitating teaching and basic research through prototyping. For the moment this platform is restricted to the numerical simulations of problems which admit a variational formulation. Our goal in this work is to evaluate the FreeFem++ tool on basic magnetic equations arising in Fusion Plasma...

Magneto-micropolar fluid motion: existence of weak solutions.

Marko A. Rojas-Medar, José Luiz Boldrini (1998)

Revista Matemática Complutense

By using the Galerkin method, we prove the existence of weak solutions for the equations of the magneto-micropolar fluid motion in two and three dimensions in space. In the two-dimensional case, we also prove that such weak solution is unique. We also prove the reproductive property.

Marangoni Convection in a Photo-Chemically Reacting Liquid

A. A. Golovin, V. A. Volpert (2008)

Mathematical Modelling of Natural Phenomena

Marangoni convection caused by a photochemical reaction of the type A h ν B in a deep liquid layer is studied. Linear stability analysis is performed and the conditions for Marangoni convection to occur are obtained. It is shown that increasing the rate of the direct reaction, for example, by increasing the light intensity, destabilizes the steady state and causes convective motion of the fluid, whereas increasing the rate of the inverse reaction stabilizes the steady state. A weakly nonlinear analysis...

Mathematical analysis and numerical simulation of a Reynolds-Koiter model for the elastohydrodynamic journal-bearing device

Iñigo Arregui, J. Jesús Cendán, Carlos Vázquez (2002)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The aim of this work is to deduce the existence of solution of a coupled problem arising in elastohydrodynamic lubrication. The lubricant pressure and concentration are modelled by Reynolds equation, jointly with the free-boundary Elrod-Adams model in order to take into account cavitation phenomena. The bearing deformation is solution of Koiter model for thin shells. The existence of solution to the variational problem presents some difficulties: the coupled character of the equations, the nonlinear...

Mathematical analysis and numerical simulation of a Reynolds-Koiter model for the elastohydrodynamic journal-bearing device

Iñigo Arregui, J. Jesús Cendán, Carlos Vázquez (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

The aim of this work is to deduce the existence of solution of a coupled problem arising in elastohydrodynamic lubrication. The lubricant pressure and concentration are modelled by Reynolds equation, jointly with the free-boundary Elrod-Adams model in order to take into account cavitation phenomena. The bearing deformation is solution of Koiter model for thin shells. The existence of solution to the variational problem presents some difficulties: the coupled character of the equations, the nonlinear...

Mathematical analysis of a discrete fracture model coupling Darcy flow in the matrix with Darcy–Forchheimer flow in the fracture

Peter Knabner, Jean E. Roberts (2014)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We consider a model for flow in a porous medium with a fracture in which the flow in the fracture is governed by the Darcy−Forchheimerlaw while that in the surrounding matrix is governed by Darcy’s law. We give an appropriate mixed, variational formulation and show existence and uniqueness of the solution. To show existence we give an analogous formulation for the model in which the Darcy−Forchheimerlaw is the governing equation throughout the domain. We show existence and uniqueness of the solution...

Mathematical analysis of a spectral hyperviscosity LES model for the simulation of turbulent flows

Jean-Luc Guermond, Serge Prudhomme (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

This paper presents a model based on spectral hyperviscosity for the simulation of 3D turbulent incompressible flows. One particularity of this model is that the hyperviscosity is active only at the short velocity scales, a feature which is reminiscent of Large Eddy Simulation models. We propose a Fourier–Galerkin approximation of the perturbed Navier–Stokes equations and we show that, as the cutoff wavenumber goes to infinity, the solution of the model converges (up to subsequences) to a weak solution...

Currently displaying 1 – 20 of 154

Page 1 Next