Page 1

Displaying 1 – 6 of 6

Showing per page

Derivation of physically motivated constraints for efficient interval simulations applied to the analysis of uncertain dynamical systems

Mareile Freihold, Eberhard P. Hofer (2009)

International Journal of Applied Mathematics and Computer Science

Interval arithmetic techniques such as VALENCIA-IVP allow calculating guaranteed enclosures of all reachable states of continuous-time dynamical systems with bounded uncertainties of both initial conditions and system parameters. Considering the fact that, in naive implementations of interval algorithms, overestimation might lead to unnecessarily conservative results, suitable consistency tests are essential to obtain the tightest possible enclosures. In this contribution, a general framework for...

Deterministic global optimization using interval constraint propagation techniques

Frederic Messine (2004)

RAIRO - Operations Research - Recherche Opérationnelle

The purpose of this article is to show the great interest of the use of propagation (or pruning) techniques, inside classical interval Branch-and-Bound algorithms. Therefore, a propagation technique based on the construction of the calculus tree is entirely explained and some properties are presented without the need of any formalism (excepted interval analysis). This approach is then validated on a real example: the optimal design of an electrical rotating machine.

Deterministic global optimization using interval constraint propagation techniques

Frederic Messine (2010)

RAIRO - Operations Research

The purpose of this article is to show the great interest of the use of propagation (or pruning) techniques, inside classical interval Branch-and-Bound algorithms. Therefore, a propagation technique based on the construction of the calculus tree is entirely explained and some properties are presented without the need of any formalism (excepted interval analysis). This approach is then validated on a real example: the optimal design of an electrical rotating machine.

Directed forests with application to algorithms related to Markov chains

Piotr Pokarowski (1999)

Applicationes Mathematicae

This paper is devoted to computational problems related to Markov chains (MC) on a finite state space. We present formulas and bounds for characteristics of MCs using directed forest expansions given by the Matrix Tree Theorem. These results are applied to analysis of direct methods for solving systems of linear equations, aggregation algorithms for nearly completely decomposable MCs and the Markov chain Monte Carlo procedures.

Currently displaying 1 – 6 of 6

Page 1