Improved estimates for the Ginzburg-Landau equation : the elliptic case

Fabrice Bethuel[1]; Giandomenico Orlandi[2]; Didier Smets[3]

  • [1] Laboratoire Jacques-Louis Lions Université de Paris 6 4 place Jussieu BC 187 75252 Paris, France
  • [2] Dipartimento di Informatica Università di Verona strada le Grazie 37134 Verona, Italy
  • [3] Centro di Ricerca Matematica Ennio De Giorgi Scuola Normale Superiore di Pisa Piazza dei Cavalieri 3 56100 Pisa, Italy

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2005)

  • Volume: 4, Issue: 2, page 319-355
  • ISSN: 0391-173X

Abstract

top
We derive estimates for various quantities which are of interest in the analysis of the Ginzburg-Landau equation, and which we bound in terms of the G L -energy E ε and the parameter ε . These estimates are local in nature, and in particular independent of any boundary condition. Most of them improve and extend earlier results on the subject.

How to cite

top

Bethuel, Fabrice, Orlandi, Giandomenico, and Smets, Didier. "Improved estimates for the Ginzburg-Landau equation : the elliptic case." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 4.2 (2005): 319-355. <http://eudml.org/doc/84562>.

@article{Bethuel2005,
abstract = {We derive estimates for various quantities which are of interest in the analysis of the Ginzburg-Landau equation, and which we bound in terms of the $GL$-energy $E_\varepsilon $ and the parameter $\varepsilon $. These estimates are local in nature, and in particular independent of any boundary condition. Most of them improve and extend earlier results on the subject.},
affiliation = {Laboratoire Jacques-Louis Lions Université de Paris 6 4 place Jussieu BC 187 75252 Paris, France; Dipartimento di Informatica Università di Verona strada le Grazie 37134 Verona, Italy; Centro di Ricerca Matematica Ennio De Giorgi Scuola Normale Superiore di Pisa Piazza dei Cavalieri 3 56100 Pisa, Italy},
author = {Bethuel, Fabrice, Orlandi, Giandomenico, Smets, Didier},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {2},
pages = {319-355},
publisher = {Scuola Normale Superiore, Pisa},
title = {Improved estimates for the Ginzburg-Landau equation : the elliptic case},
url = {http://eudml.org/doc/84562},
volume = {4},
year = {2005},
}

TY - JOUR
AU - Bethuel, Fabrice
AU - Orlandi, Giandomenico
AU - Smets, Didier
TI - Improved estimates for the Ginzburg-Landau equation : the elliptic case
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2005
PB - Scuola Normale Superiore, Pisa
VL - 4
IS - 2
SP - 319
EP - 355
AB - We derive estimates for various quantities which are of interest in the analysis of the Ginzburg-Landau equation, and which we bound in terms of the $GL$-energy $E_\varepsilon $ and the parameter $\varepsilon $. These estimates are local in nature, and in particular independent of any boundary condition. Most of them improve and extend earlier results on the subject.
LA - eng
UR - http://eudml.org/doc/84562
ER -

References

top
  1. [1] D. Adams, A Trace inequality for generalized potentials, Studia Math. 48 (1973), 99–105. Zbl0237.46037MR336316
  2. [2] D. Adams, Weighted nonlinear potential theory, Trans. Amer. Math. Soc. 297 (1986), 73–94. Zbl0656.31012MR849468
  3. [3] G. Alberti, S. Baldo and G. Orlandi, Variational convergence for functionals of Ginzburg-Landau type, Indiana Univ. Math. J., to appear Zbl1160.35013MR2177107
  4. [4] L. Ambrosio and M. Soner, A measure theoretic approach to higher codimension mean curvature flow, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 25 (1997), 27–49. Zbl1043.35136MR1655508
  5. [5] F. Bethuel, J. Bourgain, H. Brezis and G. Orlandi, W 1 , p estimates for solutions to the Ginzburg-Landau equations with boundary data in H 1 / 2 , C.R. Acad. Sci. Paris Sér. I Math. 333 (2001), 1–8. Zbl1080.35020MR1881236
  6. [6] F. Bethuel, H. Brezis and F. Hélein, Asymptotics for the minimization of a Ginzburg-Landau functional, Calc. Var. Partial Differential Equations 1 (1993), 123–148. Zbl0834.35014MR1261720
  7. [7] F. Bethuel, H. Brezis and F. Hélein, “Ginzburg-Landau vortices”, Birkhäuser, Boston, 1994. Zbl0802.35142MR1269538
  8. [8] F. Bethuel, H. Brezis and G. Orlandi, Asymptotics for the Ginzburg-Landau equation in arbitrary dimensions, J. Funct. Anal. 186 (2001), 432–520. Erratum 188 (2002), 548–549. Zbl1077.35047MR1864830
  9. [9] F. Bethuel and G. Orlandi, Uniform estimates for the parabolic Ginzburg-Landau equation, ESAIM Control Optim. Calc. Var. 9 (2002), 219–238. Zbl1078.35013MR1932951
  10. [10] F. Bethuel, G. Orlandi and D. Smets, Vortex rings for the Gross-Pitaevskii equation, J. Eur. Math. Soc. 6 (2004), 17–94. Zbl1091.35085MR2041006
  11. [11] F. Bethuel, G. Orlandi and D. Smets, Convergence of the parabolic Ginzburg-Landau equation to motion by mean curvature, Ann. of Math., to appear Zbl1103.35038MR1988309
  12. [12] F. Bethuel, G. Orlandi and D. Smets, Motion of concentration sets in Ginzburg-Landau equations, Ann. Sci. Fac. Toulouse 13 (2004), 3–43. Zbl1063.35075MR2060028
  13. [13] F. Bethuel, G. Orlandi and D. Smets, Approximations with vorticity bounds for the Ginzburg-Landau functional, Commun. Contemp. Math. 6 (2004), 803–832. Zbl1129.35329MR2100765
  14. [14] F. Bethuel, G. Orlandi and D. Smets, Collisions and phase-vortex interactions in dissipative Ginzburg-Landau dynamics, Duke Math. J., to appear. Zbl1087.35008MR2184569
  15. [15] F. Bethuel and T. Rivière, A minimization problem related to superconductivity, Ann. Inst. H. Poincaré Anal. Non Linéaire 12 (1995), 243–303. Zbl0842.35119MR1340265
  16. [16] J. Bourgain and H. Brezis, New estimates for the Laplacian, the div-curl and related Hodge systems, C.R. Acad. Sci. Paris Sér. I Math. 338 (2004), 539–543. Zbl1101.35013MR2057026
  17. [17] J. Bourgain, H. Brezis and P. Mironescu, On the structure of the Sobolev space H 1 with values in the circle, C.R. Acad. Sci. Paris Série I 331 (2000), 119–124. Zbl0970.35069MR1781527
  18. [18] J. Bourgain, H. Brezis and P. Mironescu, H 1 / 2 maps with values into the circle: minimal connections, lifting and the Ginzburg-Landau equation, Inst. Hantes Études Sci. Publ. Math. 99 (2004), 1–115. Zbl1051.49030MR2075883
  19. [19] K. Brakke, “The motion of a surface by its mean curvature”, Princeton University Press, Princeton, 1978. Zbl0386.53047MR485012
  20. [20] H. Brezis and P. Mironescu, Sur une conjecture de E. De Giorgi relative à l’énergie de Ginzburg-Landau, C. R. Acad. Sci. Paris Série I Math. 319 (1994), 167–170. Zbl0805.49004MR1288397
  21. [21] Y. Chen and M. Struwe, Existence and partial regularity results for the heat flow for harmonic maps, Math. Z. 201 (1989), 83–103. Zbl0652.58024MR990191
  22. [22] D. Chiron, Boundary problems for the Ginzburg-Landau equation, Comm. Contemp. Math., to appear. Zbl1124.35081MR2175092
  23. [23] R. Coifman, P. L. Lions, Y. Meyer and S. Semmes, Compensated compactness and Hardy spaces J. Math. Pures Appl. 72 (1993), 247–286. Zbl0864.42009MR1225511
  24. [24] M. Comte and P. Mironescu, The behavior of a Ginzburg-Landau minimizer near its zeroes, Calc. Var. Partial Differential Equations 4 (1996), 323–340. Zbl0869.35036MR1393268
  25. [25] R. Hervé, and M. Hervé, Etude qualitative des solutions réelles d’une équation différentielle liée à l’équation de Ginzburg-Landau, Ann. Inst. H. Poincaré Anal. Non Linéaire 11 (1994), 427–440. Zbl0836.34090MR1287240
  26. [26] L. Hedberg and T. Wolff, Thin sets in nonlinear potential theory, Ann. Inst. Fourier (Grenoble) 23 (1983), 161–187. Zbl0508.31008MR727526
  27. [27] T. Ilmanen, Convergence of the Allen-Cahn equation to Brakke’s motion by mean curvature, J. Differential Geom. 38 (1993), 417–461. Zbl0784.53035MR1237490
  28. [28] R. L. Jerrard and H. M. Soner, The Jacobian and the Ginzburg-Landau energy, Calc. Var. Partial Differential Equations 14 (2002), 151–191. Zbl1034.35025MR1890398
  29. [29] F. H. Lin and T. Rivière, Complex Ginzburg-Landau equations in high dimensions and codimension two area minimizing currents, J. Eur. Math. Soc. 1 (1999), 237–311. Erratum, J. Eur. Math. Soc. 2 (2000), 87–91. Zbl0939.35056MR1750451
  30. [30] F. H. Lin and T. Rivière, A quantization property for static Ginzburg-Landau vortices, Comm. Pure Appl. Math. 54 (2001), 206–228. Zbl1033.58013MR1794353
  31. [31] B. Muckenhoupt and R. Wheeden, Weighted norm inequalities for fractional integrals, Trans. Amer. Math. Soc. 192 (1974), 261–274. Zbl0289.26010MR340523
  32. [32] D. Preiss, Geometry of measures in n : distribution, rectifiability, and densities, Ann. of Math. 125 (1987), 537-643. Zbl0627.28008MR890162
  33. [33] T. Rivière, Line vortices in the U ( 1 ) Higgs model, ESAIM Control Optim. Calc. Var. 1 (1996), 77–167. Zbl0874.53019MR1394302
  34. [34] R. Schoen and S. T. Yau, “Lectures on harmonic maps”, International Press, Cambridge, MA, 1997. Zbl0886.53004MR1474501
  35. [35] L. Simon, Lectures on Geometric Measure Theory, Proc. of the centre for Math. Anal., Austr. Nat. Univ., 1983. Zbl0546.49019MR756417
  36. [36] M. Struwe, On the asymptotic behavior of minimizers of the Ginzburg-Landau model in 2 dimensions, Differential Integral Equations 7 (1994), 1613–1624. Zbl0809.35031MR1269674
  37. [37] J. Van Schaftingen, A simple proof of an inequality of Bourgain, Brezis and Mironescu, C.R. Acad. Sci. Paris, Sér. 1 Math. 338 (2004), 23–26. Zbl1188.26015MR2038078
  38. [38] W. P. Ziemer, “Weakly differentiable functions. Sobolev spaces and functions of bounded variation”, Graduate Texts in Math. 120, Springer Verlag, New York, 1989. Zbl0692.46022MR1014685

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.