Unbiased group-wise alignment by iterative central tendency estimations

M. S. De Craene; B. Macq; F. Marques; P. Salembier; S. K. Warfield

Mathematical Modelling of Natural Phenomena (2008)

  • Volume: 3, Issue: 6, page 2-32
  • ISSN: 0973-5348

Abstract

top
This paper introduces a new approach for the joint alignment of a large collection of segmented images into the same system of coordinates while estimating at the same time an optimal common coordinate system. The atlas resulting from our group-wise alignment algorithm is obtained as the hidden variable of an Expectation-Maximization (EM) estimation. This is achieved by identifying the most consistent label across the collection of images at each voxel in the common frame of coordinates.
In an iterative process, each subject is iteratively aligned with the current probabilistic atlas until convergence of the estimated atlas is reached. Two different transformation models are successively applied in the alignment process: an affine transformation model and a dense non-rigid deformation field. The metric for both transformation models is the mutual information that is computed between the probabilistic atlas and each subject. This metric is optimized in the affine alignment step using a gradient based stochastic optimization (SPSA) and with a variational approach to estimate the non-rigid atlas to subject transformations.
A first advantage of our method is that the computational cost increases linearly with the number of subjects in the database. This method is therefore particularly suited for a large number of subjects. Another advantage is that, when computing the common coordinate system, the estimation algorithm identifies weights for each subject on the basis of the typicality of the segmentation. This makes the common coordinate system robust to outliers in the population.
Several experiments are presented in this paper to validate our atlas construction method on a population of 80 brain images segmented into 4 labels (background, white and gray matters and ventricles). First, the 80 subjects were aligned using affine and dense non-rigid deformation models. The results are visually assessed by examining how the population converges closer to a central tendency when the deformation model allows more degrees of freedom (from affine to dense non-rigid field). Second, the stability of the atlas construction procedure for various sizes of population was investigated by starting from a subset of the total population which was incrementally augmented until the total population of 80 subjects was reached. Third, the consistency of our group-wise reference (hidden variable of the EM algorithm) was also compared to the choice of an arbitrary subject for a subset of 10 subjects. According to William's index, our reference choice performed favorably. Finally, the performance of our algorithm was quantified on a synthetic population of 10 subjects (generated using random B-Spline transformations) using a global overlap measure for each label. We also measured the robustness of this measure to the introduction of noisy subjects in the population.

How to cite

top

De Craene, M. S., et al. "Unbiased group-wise alignment by iterative central tendency estimations." Mathematical Modelling of Natural Phenomena 3.6 (2008): 2-32. <http://eudml.org/doc/222396>.

@article{DeCraene2008,
abstract = { This paper introduces a new approach for the joint alignment of a large collection of segmented images into the same system of coordinates while estimating at the same time an optimal common coordinate system. The atlas resulting from our group-wise alignment algorithm is obtained as the hidden variable of an Expectation-Maximization (EM) estimation. This is achieved by identifying the most consistent label across the collection of images at each voxel in the common frame of coordinates.
In an iterative process, each subject is iteratively aligned with the current probabilistic atlas until convergence of the estimated atlas is reached. Two different transformation models are successively applied in the alignment process: an affine transformation model and a dense non-rigid deformation field. The metric for both transformation models is the mutual information that is computed between the probabilistic atlas and each subject. This metric is optimized in the affine alignment step using a gradient based stochastic optimization (SPSA) and with a variational approach to estimate the non-rigid atlas to subject transformations.
A first advantage of our method is that the computational cost increases linearly with the number of subjects in the database. This method is therefore particularly suited for a large number of subjects. Another advantage is that, when computing the common coordinate system, the estimation algorithm identifies weights for each subject on the basis of the typicality of the segmentation. This makes the common coordinate system robust to outliers in the population.
Several experiments are presented in this paper to validate our atlas construction method on a population of 80 brain images segmented into 4 labels (background, white and gray matters and ventricles). First, the 80 subjects were aligned using affine and dense non-rigid deformation models. The results are visually assessed by examining how the population converges closer to a central tendency when the deformation model allows more degrees of freedom (from affine to dense non-rigid field). Second, the stability of the atlas construction procedure for various sizes of population was investigated by starting from a subset of the total population which was incrementally augmented until the total population of 80 subjects was reached. Third, the consistency of our group-wise reference (hidden variable of the EM algorithm) was also compared to the choice of an arbitrary subject for a subset of 10 subjects. According to William's index, our reference choice performed favorably. Finally, the performance of our algorithm was quantified on a synthetic population of 10 subjects (generated using random B-Spline transformations) using a global overlap measure for each label. We also measured the robustness of this measure to the introduction of noisy subjects in the population. },
author = {De Craene, M. S., Macq, B., Marques, F., Salembier, P., Warfield, S. K.},
journal = {Mathematical Modelling of Natural Phenomena},
keywords = {group-wise alignment; probabilistic atlas; expectation-maximization},
language = {eng},
month = {12},
number = {6},
pages = {2-32},
publisher = {EDP Sciences},
title = {Unbiased group-wise alignment by iterative central tendency estimations},
url = {http://eudml.org/doc/222396},
volume = {3},
year = {2008},
}

TY - JOUR
AU - De Craene, M. S.
AU - Macq, B.
AU - Marques, F.
AU - Salembier, P.
AU - Warfield, S. K.
TI - Unbiased group-wise alignment by iterative central tendency estimations
JO - Mathematical Modelling of Natural Phenomena
DA - 2008/12//
PB - EDP Sciences
VL - 3
IS - 6
SP - 2
EP - 32
AB - This paper introduces a new approach for the joint alignment of a large collection of segmented images into the same system of coordinates while estimating at the same time an optimal common coordinate system. The atlas resulting from our group-wise alignment algorithm is obtained as the hidden variable of an Expectation-Maximization (EM) estimation. This is achieved by identifying the most consistent label across the collection of images at each voxel in the common frame of coordinates.
In an iterative process, each subject is iteratively aligned with the current probabilistic atlas until convergence of the estimated atlas is reached. Two different transformation models are successively applied in the alignment process: an affine transformation model and a dense non-rigid deformation field. The metric for both transformation models is the mutual information that is computed between the probabilistic atlas and each subject. This metric is optimized in the affine alignment step using a gradient based stochastic optimization (SPSA) and with a variational approach to estimate the non-rigid atlas to subject transformations.
A first advantage of our method is that the computational cost increases linearly with the number of subjects in the database. This method is therefore particularly suited for a large number of subjects. Another advantage is that, when computing the common coordinate system, the estimation algorithm identifies weights for each subject on the basis of the typicality of the segmentation. This makes the common coordinate system robust to outliers in the population.
Several experiments are presented in this paper to validate our atlas construction method on a population of 80 brain images segmented into 4 labels (background, white and gray matters and ventricles). First, the 80 subjects were aligned using affine and dense non-rigid deformation models. The results are visually assessed by examining how the population converges closer to a central tendency when the deformation model allows more degrees of freedom (from affine to dense non-rigid field). Second, the stability of the atlas construction procedure for various sizes of population was investigated by starting from a subset of the total population which was incrementally augmented until the total population of 80 subjects was reached. Third, the consistency of our group-wise reference (hidden variable of the EM algorithm) was also compared to the choice of an arbitrary subject for a subset of 10 subjects. According to William's index, our reference choice performed favorably. Finally, the performance of our algorithm was quantified on a synthetic population of 10 subjects (generated using random B-Spline transformations) using a global overlap measure for each label. We also measured the robustness of this measure to the introduction of noisy subjects in the population.
LA - eng
KW - group-wise alignment; probabilistic atlas; expectation-maximization
UR - http://eudml.org/doc/222396
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.